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Introduction. A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data 
are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of 
AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs.

Methods. Healthy adults (n = 180), ages 19–50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 
clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime- 
boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 μg of hemagglutinin) administered with or 
without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing 
antibody titers were assessed.

Results. Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had 
injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity 
was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a 
longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) 
observed against the 2017 A(H7N9) strain was 133.4 (83.6–212.6) among participants who received homologous, adjuvanted 
3.75 µg + AS03/2017 doses with delayed boost interval.

Conclusions. Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months 
resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic 
preparedness. Clinical Trials Registration. NCT03589807.
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Emerging and reemerging infectious pathogens can rapidly 
spread through the progressively interconnected world to 
threaten human health [1]. Since the 1918 influenza pandemic, 
the emergence of influenza A strains from avian or porcine res
ervoirs highlights the need to prepare for the next influenza 
pandemic [2–8]. Influenza A(H7N9) viruses emerged to cause 
infections in people in 2013 [9], prompting studies of an inac
tivated 2013 H7N9 influenza vaccine [10–12]. A subsequent 
surge of human influenza A(H7N9) cases began in the fall of 
2016 in China with emergence of the antigenically distinct 
Yangtze River Delta lineage [13, 14]. As a result, the US 
Department of Health and Human Services determined that in
fluenza A(H7N9) virus has significant pandemic potential and 
supported the production of A/Hong Kong/125/2017 (H7N9) 
inactivated influenza vaccine (IIVs) for the US strategic na
tional stockpile and for assessments of safety and immunoge
nicity. Additional drift within highly pathogenic A(H7N9) 
was subsequently observed, which rendered it capable of in
fecting ferrets via respiratory droplets without adaptation, 
supporting the potential for sustained human-to-human 
transmission (A/Guangdong/17SF003/2016) [15].

A critical question is how to optimize vaccine-induced im
mune responses against novel pathogens like A(H7N9). In ge
neral, vaccines made from novel avian influenza viruses are 
poorly immunogenic even at high hemagglutinin doses [10, 
16, 17]. Several immunization strategies have shown potential 
to enhance immunogenicity. First, oil-in-water emulsion ad
juvants, (eg, AS03 [GlaxoSmithKline Biologicals) are well tol
erated and dose sparing resulting in increased antibody 
responses to IIVs containing novel hemagglutinins 10–12, 
18–20]. Second, evidence with antigens of other pathogens 
(eg, influenza A(H5N1), modified vaccinia Ankara, anthrax, 
and coronavirus disease 2019 [COVID-19]) suggests that 
antibody responses are impaired by shortening the interval 
between prime and boost [21–25]. Extending the prime–boost 
interval may improve antibody responses [26–28] because of 
ongoing immune response maturation [29]. Finally, the use 
of heterologous prime–boost vaccination regimens could 
expand the breadth and durability of cross-clade antibody 
responses [26–28].

The goal of this clinical trial was to assess the safety, reactoge
nicity, and immunogenicity of 2013 and 2017 A(H7N9) IIVs in 
healthy adults to better understand the impact of dose, adjuvant, 
prime–boost interval (21 vs 120 days), and homologous versus 
heterologous priming effects of 2013 or 2017 A(H7N9) IIVs.

METHODS

Trial Design and Participants

After institutional review board approval at the participating 
institutions, adults aged 19–50 years who provided written in
formed consent were enrolled in this partially blinded (blinded 
to treatment assignment and unblinded to treatment interval), 

randomized, multicenter phase 2 clinical trial from 21 August 
to 13 November 2018.

Eligibility criteria included participants in good health or 
with stable chronic medical conditions without recent changes 
in prescription medication (Supplementary Methods). Eligible 
participants were randomly assigned to 1 of 6 vaccination 
groups (Supplementary Table 1) stratified by site and prior re
ceipt of licensed, seasonal influenza vaccine in at least 1 of the 
2017–2018 and/or 2018–2019 seasons. Subjects in study groups 
1 and 4 received vaccination on days 1 and 22, whereas study 
groups 2, 3, 5, and 6 received vaccination on days 1 and 121. 
Subjects were followed through 12 months after their last study 
vaccination.

Study Product

The first dose was 3.75 mcg of either A/Shanghai/2/2013 (H7N9) 
or A/Hong Kong/125/2017 (H7N9) administered with AS03 ad
juvant via 0.5 mL intramuscular injection into the deltoid muscle. 
The second dose was either 3.75 mcg of 2017 A(H7N9) adminis
tered with AS03 or 15 mcg of 2017 A(H7N9) administered with
out AS03 (Supplementary Methods).

Assessment of Subject Reactogenicity and Safety

The occurrence of solicited injection site and systemic reactions 
was assessed from the time of study vaccination through 7 days 
after each study vaccination. Unsolicited nonserious adverse 
events (AEs) were collected from the time of each study vacci
nation through 21 days after each study vaccination. Serious 
AEs (SAEs) and medically attended adverse events, including 
new-onset chronic medical conditions (NOCMCs) and poten
tially immune-mediated medical conditions (PIMMCs), were 
collected from first study vaccination throughout the study. 
Clinical safety laboratory evaluations were obtained before 
and 7 days after each study vaccination.

Assessment of Antibody Response

Antibody titers were assessed on day 1 before the first vaccina
tion, 21 days after vaccination 1 (groups 1 and 4 only), 120 
days after vaccination 1 (groups 2, 3, 5, and 6 only), and 21 
days and 180 days after vaccination 2. The primary analysis in
cluded assessment of hemagglutinin inhibition (HAI) and neu
tralizing (Neut) antibodies against the A/Shanghai/2/2013 
H7N9 strain and the A/Hong Kong/125/2017 H7N9 strain. 
The geometric mean titer (GMT), geometric mean fold rise 
from baseline, the percentage of subjects with a titer ≥40, and 
the percentage of subjects with seroconversion (defined as either 
a prevaccination titer <10 and a postvaccination titer ≥40 or a 
prevaccination titer ≥10 and a minimum 4-fold rise in postvac
cination titer) were determined. In addition, HAI and Neut an
tibodies were assessed against the antigenically drifted A(H7N9) 
strain A/Guangdong/17SF003/2016. Plasmablasts were also ana
lyzed for a subset of participants (Supplementary Methods).
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Statistical Analysis

The sample size for this study was selected to obtain prelim
inary estimates of immune responses and common safety is
sues. The study was not designed to test a specific null 
hypothesis. The Safety Analysis Population consisted of all 
participants who received at least 1 study vaccination and 
for whom any safety data were available. The number and 
percentage of subjects reporting at least 1 solicited event fol
lowing any vaccination were summarized for each solicited 
symptom, any systemic symptom, any injection site symp
tom, and any symptom. The associated 95% confidence 
intervals (CIs) were calculated using Clopper-Pearson 
methodology based on the binomial distribution. Logistic 
regression was performed to evaluate the effect of vaccine 
regimens on the probability of reporting any injection site 
solicited event or reporting any systemic solicited event. 
The incidence, frequency, timing, severity, and relatedness 
of unsolicited AEs were summarized.

Immunogenicity data summaries and analyses were per
formed for the modified intent-to-treat (mITT) population 
(Supplementary Methods). Immune responses measured by 
strain-specific HAI and Neut titers were summarized by study 
group at each time point and against each A(H7N9) vaccine 
strain. Exact Clopper-Pearson 95% CIs were calculated for pro
portional endpoints; 95% CIs for continuous endpoints were 
calculated using the Student t-distribution. The primary immu
nogenicity analysis was an assessment of these endpoints at 21 
days after the second study vaccination. Secondary analyses in
cluded assessment of the previously described HAI and Neut 
against the A(H7N9) vaccine study strains at 21 days after 
the first study vaccination, immediately before the second study 
vaccination, and 180 days after the second study vaccination. 
As an exploratory analysis, multiple linear regression was per
formed to examine the relationship between log-transformed 
HAI and Neut titers and prime–boost (homologous [reference 
group] versus heterologous), boost dose (15 mcg [reference 
group] versus 3.75 mcg + AS03), and vaccination interval (21 
days [reference group] versus 120 days), against the study vac
cination strains at 21 days after the second vaccination.

RESULTS

Study Participants

A total of 254 healthy adults were screened and 180 were random
ized between 21 August and 13 November 2018 (Figure 1). 
Overall, the median age was 29 years and the majority of enrolled 
subjects were female (59%), non-Hispanic (89%), and White 
(67%) (Table 1). Most subjects (82%) had not received the 
2018–2019 seasonal vaccine before study participation. Enrolled 
subjects were randomized to 1 of 6 groups (Figure 1). Small nu
merical imbalances were observed between the groups because 
of the randomization by site and by prior receipt of licensed, 

seasonal influenza vaccine. Age, ethnicity, race, and body mass in
dex were similarly distributed across study groups with the excep
tion that group 1 had a higher proportion of males (59%).

Vaccine Reactogenicity & Safety

Injection site and systemic reactogenicity were observed in 
most participants. After both doses of vaccine, solicited injec
tion site symptoms occurred in nearly all participants (94%), 
with tenderness (87%), pain (56%), and erythema (34%) occur
ring most commonly. Most injection site reactions were mild to 
moderate (or small to medium in size). Grade 3 injection site 
reactions occurred in 4% of participants after the first dose 
and 1% of participants after the second dose and were mostly 
erythema or induration/swelling. Solicited systemic symptoms 
occurred in most participants (63%), with fatigue (39%), myal
gia (35%), and headache (27%) occurring most commonly. 
Most systemic symptoms were mild to moderate (Figure 2). 
A single individual had grade 3 arthralgia after dose 1 (group 6), 
and another had grade 3 fatigue after dose 2 (group 5). The 
logistic regression model after the second vaccine dose identified 
that receipt of 3.75 μg with AS03 was associated with increased 
odds (odds ratio, 37.87; 95% CI, 8.28–173.25) of injection site 
AEs (particularly pain, tenderness, and induration) when com
pared with 15 μg unadjuvanted vaccine. The longer boost inter
val was also associated with increased odds of injection site AEs 
(odds ratio, 7.61; 95% CI, 1.63–35.51) (Supplementary Table 2). 
The logistic regression model did not identify any factors asso
ciated with systemic symptoms after the boost. Vital sign data, 
laboratory findings, and unsolicited AEs are detailed in the 
Supplementary Results.

Of the 9 (5%) subjects who had unsolicited AEs that were 
considered by investigators to be related to vaccination, 6 
were mild, 3 were moderate (episcleritis, upper respiratory in
fection, tendonitis), and none was severe (Supplementary 
Table 3, Supplementary Figure 1). The episcleritis also was a 
medically attended AEs and an NOCMC. No PIMMCs were re
ported in the study. An ectopic pregnancy followed by miscar
riage occurred at an estimated gestational age of 16 days (146 
days after the second vaccination) in 1 subject who became 
pregnant during the study. The 4 SAEs reported (1 in group 
3, 2 in group 4, and 1 in group 6) were not considered related 
to vaccine, and no deaths occurred.

Immunogenicity Outcomes

HAI responses were detected against A/Hong Kong/125/2017 (A/ 
H7N9) at ≥40 at baseline in ≤6% of participants in each group, 
with the exception of group 1, in which 11% of subjects had a 
baseline HAI titer ≥40 (Table 2, Figure 3). Overall, minimal in
creases in HAI and Neut titers were observed following the first 
study vaccination (Supplementary Table 4). HAI and Neut titers 
were highest and most highly correlated (Supplementary 
Figure 2) at 21 days after vaccination 2, at which time HAI 
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GMTs (95% CI) against A/Hong Kong/125/2017 were 75.7 (48.0– 
119.4) for group 1, 97.2 (55.9–169.0) for group 2, 43.1 (26.6–69.6) 
for group 3, 65.0 (42.4–99.5) for group 4, 133.4 (83.6–212.6) for 
group 5, and 33.2 (20.3–54.5) for group 6. The 15-μg unadju
vanted boost dose groups (groups 3 and 6) displayed modest in
creases in both HAI and Neut titers compared with the other 
study groups. At 21 days after vaccination 2, study groups with 
a 120-day vaccination interval and 3.75-μg + AS03 boost dose 
(groups 2 and 5) displayed higher GMTs, geometric mean fold 
rises, and rates of seroconversion for both study vaccine strains 
compared with other study groups (Table 2, Figure 3). By 180 
days after vaccination 2, HAI and Neut titers decreased across 
study groups but remained higher than before receipt of the sec
ond vaccination. At 180 days, the HAI GMTs (95% CI) against 
A/Hong Kong/125/2017 were 24.7 (15.2–40.1) for group 1, 47.3 
(24.7–90.7) for group 2, 13.8 (8.6–22.0) for group 3, 20.8 (13.5– 
32.1) for group 4, 38.8 (22.6–66.4) for group 5, and 8.5 (6.4– 
11.1) for group 6. Overall, HAI titers against the A/Shanghai/2/ 
2013 H7N9 strain were lower compared with responses to the 
A/Hong Kong/125/2017 H7N9 strain across timepoints, whereas 
Neut titers were similar.

Linear regression models of log-transformed HAI and Neut 
antibody titers at 21 days after the second vaccination indicated 
that subjects who received the AS03-adjuvanted 3.75-µg boost 
dose had significantly higher mean log titers against both 
strains (Table 3) and against the antigenically drifted variant 
A/Guangdong/17SF003/2016 strain (Supplementary Table 5) 
compared with subjects who received the unadjuvanted boost 
dose. Subjects who had a 120-day interval between study vac
cinations had significantly higher mean log titers against both 
vaccine strains and against the A/Guangdong/17SF003/2016 
strain compared with subjects who had a 21-day interval be
tween study vaccinations (Supplementary Table 6). Subjects 
who received a heterologous prime–boost had significantly 
higher mean log Neut titers against the A/Shanghai/2/2013 
H7N9 strain compared with subjects who received a homol
ogous prime–boost; no significant effects of heterologous 
boosting were observed for prime–boost on mean HAI log 
titer for either study strain (Table 3) or A/Guangdong/ 
17SF003/2016 strain HAI (Supplementary Table 5a) or for 
mean Neut log titer against A/Hong Kong/125/2017 (Table 3) 
or A/Guangdong/17SF003/2016 (Supplementary Table 5b). 

Figure 1. CONSORT flow diagram of subject participation. See Supplementary Methods and Results for additional details about the Per Protocol Analysis (PP) and reasons 
for exclusion. Abbreviations: AE, adverse events; CONSORT, Consolidated Standards of Reporting Trials; MM, medical monitor; Subj, subject; Vac, vaccine.
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Logistic regression models of HAI and Neut seroconversion 
at 21 days after the second vaccination yielded generally sim
ilar results to the linear regression models. At 180 days, the 
AS03-adjuvanted boost and 120-day dosing interval re
mained statistically predictive of Neut seroconversion against 
both A/Hong Kong/125/2017 and A/Shanghai/2/2013 H7N9 
strains (Supplementary Table 7).

HAI and Neut antibody responses against the antigenically 
drifted A/Guangdong/17SF003/2016 strain were generally 

lower in magnitude compared with A/Hong Kong/125/2017 
but similar when compared with A/Shanghai/2/2013 and had 
similar kinetics across study time points (Supplementary 
Table 6). Plasmablast responses ascertained from a subset of 
participants are shown in Supplementary Figures 3 and 4. 
Broadly, hemagglutinin-specific responses were qualitatively 
greater than neuraminidase-specific responses across study 
groups, and the greatest plasmablast responses were hemagglu
tinin-specific IgG following the second vaccination.

Table 1. Summary of Categorical and Continuous Demographic and Baseline Characteristics by Study Group, All Enrolled Subjects

Variable Statistic Characteristic

Group 1 
2013 

3.75 +  
AS03/ 
2017 

3.75 + AS03 
(D1-D22) 
(N = 27)

Group 2 
2013 

3.75 +  
AS03/ 
2017 

3.75 + AS03 
(D1-D121) 
(N = 30)

Group 3 
2013 

3.75 +  
AS03/ 

2017 15 
(D1-D121) 
(N = 33)

Group 4 
2017 

3.75 +  
AS03/ 
2017 

3.75 + AS03 
(D1-D22) 
(N = 32)

Group 5 
2017 

3.75 +  
AS03/ 
2017 

3.75 + AS03 
(D1-D121) 
(N = 28)

Group 6 
2017 

3.75 +  
AS03/ 

2017 15 
(D1-D121) 
(N = 30)

All Subjects 
(N = 180)

Sex n (%) Male 16 (59) 11 (37) 10 (30) 13 (41) 9 (32) 15 (50) 74 (41)

n (%) Female 11 (41) 19 (63) 23 (70) 19 (59) 19 (68) 15 (50) 106 (59)

BMI, kg/m2 n (%) <30 21 (78) 27 (90) 23 (70) 24 (75) 18 (64) 20 (67) 133 (74)

n (%) ≥30 6 (22) 3 (10) 10 (30) 8 (25) 9 (32) 10 (33) 46 (26)

n (%) Unknown - - - - 1 (4) - 1 (<1)

Mean (SD) - 27.1 (3.3) 25.0 (4.3) 28.3 (5.9) 26.3 (5.0) 27.2 (6.2) 28.2 (6.8) 27.0 (5.4)

Median (Min, 
Max)

- 27.6  
(20.1,32.8)

24.1  
(18.3,38.6)

26.6  
(18.2,45.2)

26.4  
(19.2,38.5)

25.8  
(18.7,40.1)

25.5  
(17.0,41.5)

25.7  
(17.0,45.2)

Age, y n (%) 19–34 16 (59) 24 (80) 25 (76) 19 (59) 19 (68) 19 (63) 122 (68)

n (%) 35–50 11 (41) 6 (20) 8 (24) 13 (41) 9 (32) 11 (37) 58 (32)

Mean (SD) - 32.3 (8.2) 29.7 (7.5) 29.6 (7.7) 32.8 (9.2) 31.2 (7.7) 30.6 (8.4) 31.0 (8.1)

Median (Min, 
Max)

- 32.0 (21, 50) 29.0 (20, 48) 27.0 (19, 49) 32.5 (19, 50) 29.0 (21, 48) 27.5 (19, 48) 29.0 (19, 50)

Ethnicity n (%) Not Hispanic or Latino 25 (93) 26 (87) 29 (88) 28 (88) 25 (89) 28 (93) 161 (89)

n (%) Hispanic or Latino 2 (7) 4 (13) 4 (12) 4 (13) 3 (11) 2 (7) 19 (11)

Race n (%) Asian 1 (4) 2 (7) - 1 (3) - 2 (7) 6 (3)

n (%) Black or African American 5 (19) 5 (17) 11 (33) 6 (19) 9 (32) 4 (13) 40 (22)

n (%) White 18 (67) 22 (73) 20 (61) 23 (72) 17 (61) 21 (70) 121 (67)

n (%) Multiracial 3 (11) - 2 (6) 2 (6) 2 (7) 2 (7) 11 (6)

n (%) Unknown - 1 (3) - - - 1 (3) 2 (1)

Prior seasonal  
influenza  
vaccination  
(prior 
seasons)

n (%) 2016–2017 received 15 (56) 16 (53) 14 (42) 20 (63) 19 (68) 17 (57) 101 (56)

n (%) 2016–2017 not received 12 (44) 14 (47) 19 (58) 12 (38) 9 (32) 13 (43) 79 (44)

n (%) 2017–2018 received 17 (63) 18 (60) 22 (67) 20 (63) 20 (71) 18 (60) 115 (64)

n (%) 2017–2018 not received 10 (37) 12 (40) 11 (33) 12 (38) 8 (29) 12 (40) 65 (36)

Seasonal  
influenza  
vaccination  
(current 
season)

n (%) 2018–2019 received 6 (22) 3 (10) 6 (18) 7 (22) 6 (21) 5 (17) 33 (18)

n (%) 2018–2019 not received 21 (78) 27 (90) 27 (82) 25 (78) 22 (79) 25 (83) 147 (82)

Prior receipt of  
H5 influenza  
vaccine

n (%) No prior H5 influenza 
vaccination(s) 
received

24 (89) 29 (97) 30 (91) 31 (97) 27 (96) 28 (93) 169 (94)

n (%) Received prior H5 
influenza 
vaccination(s)

3 (11) 1 (3) 3 (9) 1 (3) 1 (4) 2 (7) 11 (6)

N = Number of subjects enrolled. One subject with missing weight data is excluded from BMI summaries.  

Abbreviations: BMI, body mass index; Max, maximum; Min, minimum; SD, standard deviation.
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DISCUSSION

This phase 2 clinical trial assessed the safety, reactogenicity, and 
immunogenicity of various prime–boost regimens using 2013 
and 2017 A(H7N9) IIVs. Immune responses were most robust 
with an AS03-containing boost, and with extending the prime– 
boost interval from 3 weeks to 4 months. Cross-reactive im
mune responses (HAI and Neut) observed against the antigen
ically drifted strain A/Guangdong/17SF003/2016 were 
generally similar to those observed against the A/Shanghai/2/ 
2013 strain, but lower than those observed against the A/ 
Hong Kong/125/2017 strain.

Overall, the vaccine formulations were safe and well tolerat
ed. As has been observed in other H5 and H7 studies, injection 
site reactogenicity was greater with addition of adjuvant [2, 10– 
12, 30]. Although systemic symptoms have sometimes been 
more significant with AS03 adjuvant [11, 20], this was not 

observed in this study, perhaps because only a subset of the boos
ter doses (groups 3 and 6) were administered without adjuvant. 
No PIMMCs occurred. The only pregnancy that occurred in 
this study was ectopic and ended in miscarriage at a gestational 
age of 16 days, which was considered unrelated to vaccine because 
miscarriages occur with a background incidence of 11%–21% of 
all recognized first trimester pregnancies [31]. A single participant 
had a NOCMC of episcleritis in group 5, which was considered 
related to vaccination by the investigator. Importantly, no 
vaccine-related SAEs occurred and no subjects died.

Baseline HAI and Neut titers were undetectable in nearly all 
participants, and a single dose resulted in minimal HAI and 
Neut responses [10–12]. The adjuvant-sparing approach to 
the boost dose (15 mcg of 2017 H7N9 without AS03) resulted 
in lower antibody responses than those observed with the 
antigen-sparing approach (3.75 mcg of 2017H7N9 with 

Figure 2. Systemic and injection site* reactogenicity of H7N9 influenza vaccination by dose and study group. *Grading for measurements of erythema and induration were 
small, medium, and large.
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AS03), similar to prior H7N9 studies [10, 11]. Unsurprisingly, 
individuals who received 2013 H7N9 for the first dose had bet
ter 2013 A(H7N9) HAI GMTs, while maintaining serological 
responses to 2017 H7N9, similar to other studies that have as
sessed a heterologous prime–boost approach [26–28, 32]. Use 
of such a heterologous prime–boost strategy could allow prim
ing of a population in a pandemic before boosting with a ho
mologous strain to provide strain-specific responses. Similar 
to the findings of others, significant declines in H7N9 antibody 
titers were observed by 6 months after the second dose [12, 33], 
although titers remained above baseline. This raises the ques
tion about whether a late boost (third dose) might be needed 
to provide protection in a persistent pandemic.

The timing of boost administration is recognized as having an 
impact on immunogenicity, as shortening the interval between 

the first and second doses to <3–4 weeks impairs the anamnestic 
serological responses [21–24, 26]. Here, we observed that extend
ing the boost dose from 21 days to 4 months resulted in substan
tially higher HAI and Neut GMTs. These, and other trial and 
real-world data derived from the COVID-19 pandemic, suggest 
there is potential to improve immune responses across multiple 
vaccine platforms by delaying boost administration [25, 34, 35], 
but this approach must be weighed against the need to quickly 
generate immunological protection. Our data suggest that in a 
pandemic, vaccinating with a stockpiled related but distant 
H7N9 strain could provide some priming effect until a more 
closely matched booster vaccine could be manufactured. In a re
cent study, baseline HAI titers waned to <40 in >90% of partic
ipants at 5 years after a second dose of a 2013H7N9 IIV, but a 
single AS03-adjuvanted 2017H7N9 IIV dose resulted in ≥88% 

Figure 3. Geometric mean titers of hemagglutination inhibition and neutralizing antibodies by study day and study group, modified intent-to-treat population. Shown are 
GMTs with 95% CIs from participants before vaccination and up to 181 d after vaccination 2. Each line represents a study cohort over time. Note that groups 1 and 4 received 
the second dose at day 22 after vaccination 1 (and so do not have a day 121 postvaccination 1), whereas groups 2, 3, 5, and 6 received the second dose at day 121. 
Abbreviations: CI, confidence interval; GMT, geometric mean titer; Vac, vaccination.
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of participants seroconverting at 3 weeks after this late boost [36]. 
These results suggest long-lasting memory B cells are capable of 
rapidly responding to a heterologous HA.

Limitations of this study include the small number of partici
pants in each group, which decreased our ability to assess for 
rare safety events and to identify small differences in immunoge
nicity. The study did not include children or adults >50 years of 
age, or all potential iterations of vaccine, dose, adjuvant, and inter
val. Other functional antibody, T-cell, and memory B-cell respons
es were not assessed. Because correlates of protection for avian 
influenza strains are poorly understood, additional data are needed 
to inform potential efficacy. Although our study evaluated only the 
IIV platform, it is likely that other more adaptable vaccine plat
forms may be implemented in a future pandemic. Nevertheless, 
the data generated from our study corroborate the immunologic 
benefits of heterologous and delayed interval boosting as observed 
with COVID-19 vaccines across multiple vaccine platforms.

In conclusion, we found the administration of 2013 and 2017 
H7N9 influenza vaccines with AS03 using variable dosing in
tervals to be safe and immunogenic. Utilization of AS03 adju
vant with both the first and the second dose allowed for 
H7N9 antigen sparing. Extending the interval between prime 
and boost doses from 21 days to 4 months resulted in higher 
peak antibody titers. HAI and Neut antibodies declined by 6 
months after boost, which suggests the potential need for an
other dose in a prolonged pandemic setting. These data are in
formative for facilitating pandemic preparedness and for 
optimally designing future pandemic vaccine clinical trials.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author.
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