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For COVAIL recipients of a coronavirus disease 2019 (COVID-19) 
Sanofi booster vaccine, neutralizing antibody titers were assessed 
as a correlate of risk (CoR) of COVID-19. Peak and exposure- 
proximal titers were inverse CoRs with covariate-adjusted 

hazard ratios (95% confidence intervals) 0.30 (0.11, 0.78) and 
0.25 (0.07, 0.85) per 10-fold increase in weighted average titer.

Keywords. correlate of risk; COVID-19 booster; exposure- 
proximal titer; Omicron; variant vaccine booster.

The COVID-19 Variant Immunologic Landscape (COVAIL) trial 
(NCT05289037) in the United States assessed the safety and im
munogenicity of second coronavirus disease 2019 (COVID-19) 
variant vaccine boosters [1]. COVAIL was reviewed and initially 
approved by the Advarra Central Institutional Review Board, 
with written informed consent obtained from all trial participants 
before enrollment. This report considers Stage 3, which from 
June 6 to 13, 2022, randomized 146 participants to 1 of 3 
AS03-adjuvanted, pre-S dTM [transmembrane-deleted] recombi
nant protein vaccine products (Sanofi) differing by the Spike pro
tein component(s): Prototype (ancestral), Beta, Beta + Prototype. 
From serum samples collected pre-vaccination (D1) and at Days 
15 (D15), 29, 91, 181, 50% inhibitory dilution neutralizing anti
body (nAb) titers were measured against D614G (B.1.D614G), 
Beta, Delta, Omicron BA.1, and Omicron BA.4/BA.5 using a val
idated pseudovirus neutralization assay (Monogram Biosciences). 
The nAb titers have arbitrary units/mL (AU/mL), where for 
D614G multiplying values by 0.0653 converts values to the 
International Standard scale [2].

For the Sanofi booster recipients, we assessed the 5 nAb titer 
markers measured at D15 as absolute level and as fold-rise from 
D1, as a correlate of risk (CoR) of COVID-19 between 7 and 
188 days post D15 (∼6-month period), referred to as “peak 
CoR” analysis. We also assessed a sixth marker: the maximum 
diversity weighted [3] geometric mean of the nAb titers against 
the 5 strains. We also assessed predicted-at-exposure values 
of each of the 6 markers as exposure-proximal CoRs of 
COVID-19. The COVID-19 endpoint was a self-reported or 
study-conducted positive severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) test, with onset date the earliest 
positive test date [1]. Of the 146 participants, 142 were eligible 
for CoR analysis based on having D1 and D15 nAb data, not 
having a protocol-defined eligibility deviation [1], and not hav
ing an early COVID-19 endpoint by 6 days post D15.

All correlates analyses adjusted for baseline participant factors 
(detailed below) that could putatively confound the association 
of nAb titer with COVID-19. Cumulative incidence and peak 
CoR analyses fit models using a study time scale, with time origin 
being D15, and adjusted for a baseline risk score built by ensem
ble statistical learning (Statistical Analysis Plan Section 7.1 in 

Received 06 May 2024; editorial decision 05 September 2024; published online 26 
September 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciae465/7777106 by Acquisitions D

ept Serials user on 23 D
ecem

ber 2024

https://orcid.org/0000-0002-2662-9427


Supplementary), baseline naive versus non-naive status defined 
by anti-nucleocapsid (N) seropositivity or self-reported previous 
infection (as in Branche et al [1]), and a force of infection (FOI) 
score calculated from the Coronavirus Resource Center’s 
database [4] that measures the intensity of SARS-CoV-2 infec
tion occurring in a participant’s local temporal context. 
Each participant’s FOI score is the average of daily COVID-19 
incidence rates in the database in the participant’s state 
(or District of Columbia) during their ∼6-month follow-up 
(Supplementary Figure 1). Exposure-proximal CoR analyses fit 

models using a calendar time scale and adjusted for baseline 
risk score and baseline anti-N serostatus. These analyses used 
linear mixed effects models to predict titers over time based on 
(1) nAb titers at D15, 29, 91, 181; (2) days since D15; and (3) 
baseline anti-N serostatus. The models were fit separately to 
the three vaccine arms including nAb titer values before any 
evidence of SARS-CoV-2 infection (details in Supplementary 
Materials). Supplementary Figure 2 shows measured versus pre
dicted nAb titers over time.

Figure 1. A, Covariate-adjusted cumulative incidence of COVID-19 from 7 through 188 d post D15 (last COVID-19 endpoint) for each booster arm (Beta, Prototype, Beta +  
Prototype) and for the three booster arms pooled. B, Violin box plots of D15 levels for the 6 nAb titer markers (D614G, Delta, Beta, BA.1, BA.4/BA.5, weighted average), shown 
by non-cases and COVID-19 endpoint cases (stratified by booster-proximal cases, booster-distal-cases, and proximal + distal cases). Non-cases: No evidence of SARS-CoV-2 
infection after D1 through to the first event of (1) reaching 188 d post D15 visit without a COVID-19 event, (2) early termination, and (3) receiving an out-of-study boost. 
Booster-proximal cases: COVID-19 endpoint between 7 and 91 d post D15 visit; booster-distal cases: COVID-19 endpoint between 92 and 188 d post D15 visit; cases (prox
imal + distal): COVID-19 endpoint between 7 and 188 d post D15 visit. Rate: Percent with nAb titer above the limit of detection (LoD) = 40 AU/mL. C, Cox model 
covariate-adjusted hazard ratios of COVID-19 per 10-fold increase in each of the 6 nAb titer markers at D15 and exposure-proximal. Point estimates, 95% CIs, and 2-sided 
P values are shown. D, Covariate-adjusted controlled risk of COVID-19 by nAb ID50 titer against BA.4/BA.5 estimated using a Cox model (orange line) or a nonparametric 
method (turquoise line). Both curves were restricted to the middle 95% of the marker distribution. Shaded regions represent 95% CIs. The green shaded region is a kernel 
density estimate of log10 D15 nAb-ID50 BA.4/BA.5 titer (AU/mL). Panels B–D pool over the 3 booster arms. All analyses adjust for baseline factors defined in the text, where 
adjustment for FOI score had no influence on results. Wt. Avg. = Maximum diversity weighted geometric mean of the 5 nAb titers D614G reference, Beta, Delta, Omicron 
BA.1, and Omicron BA.4/BA.5. Abbreviations: AU/mL, arbitrary units/mL; CI, confidence interval; COVID-19, coronavirus disease 2019; FOI, force of infection, nAb, neutralizing 
antibody; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ULOQ, upper limit of quantitation.
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Figure 1A shows covariate-adjusted cumulative incidence of 
COVID-19 by vaccine arm, with ∼20% participants diagnosed 
with COVID-19. Of the 22 participants that acquired 
COVID-19, 17 occurred by 3 months post D15. Supplementary 
Table 1 shows the distribution of lineages of the 22 COVID-19 
endpoints: 2 (13) were identified by sequencing as BA.4 (BA.5) 
and 7 were imputed from sequences in GISAID to be BA.5. 
Figure 1B and Supplementary Table 2 show distributions of the 
nAb titers at D15 for non-cases versus COVID-19 endpoint cases, 
indicating lower D15 titers in the latter (Branche et al [1] previ
ously described nAb titer distributions for the three individual 
vaccines). Figure 1B also shows distributions of nAb titers at 
D15 for booster-proximal versus -distal cases, with nAb titers 
of the former appearing especially low.

Supplementary Figures 3 and 4 show the nAb titer distribu
tions at D1 and as fold-rise from D1 to D15. Supplementary 
Figure 5 shows weighted average nAb titer trajectories across 
the time points, showing stable titers through 6 months. 
Supplementary Figures 6 and 7 show the intercorrelations of 
the 6 nAb titer markers across the antigens at D1 and at D15, 
demonstrating high correlations (median Spearman rank cor
relation between pairs of markers 0.93 at D1 and 0.90 at 
D15). Supplementary Figure 8 shows the inter-correlations of 
the weighted average nAb titer marker across time points.

Figure 1C shows covariate-adjusted hazard ratios for each of 
the 6 markers at peak and as predicted time-varying covariates 
for exposure-proximal Cox models, showing consistent inverse 
CoRs, with peak CoR hazard ratios ranging from 0.17 to 0.56 
per 10-fold marker increase across the markers (median 
P value = .033) and exposure-proximal CoR hazard ratios rang
ing from 0.11 to 0.49 across the markers (median P value .022). 
The peak correlates analysis restricting to the COVID-19 end
points through 3 months (booster-proximal) also showed signifi
cant inverse CoRs (Supplementary Table 3). The 6 D1 to D15 
fold-rise nAb titer markers were also assessed and not found to 
be CoRs (P values ranging from .29 to .87, Supplementary 
Table 4). Fold-rise, stratified by naive status, was modestly lower 
in cases, thus aligning with the Cox model results (Supplementary 
Figures 9–15).

Based on controlled risk modeling by a Cox model or 
monotone-constrained nonparametric analysis [5] previously 
applied to phase 3 trials [2, 6–9], Figure 1D shows how the cu
mulative incidence of COVID-19 from 7 through 188 days 
post D15 changes with D15 BA.4/BA.5 nAb titer. Hypothesis 
tests for the cumulative incidence varying with the D15 marker 
yielded P = .030 for the Cox model and P = .038 for the nonpara
metric model; these results were P = .014 (Cox) and P = .024 
(nonparametric) for weighted average titer. The probability of 
BA.4/BA.5 COVID-19 acquisition was about 40%–50% at unde
tectable nAb titer and decreased to about 15% and 7% at nAb ti
ters of 1000 and 10,000, respectively (nonparametric model). 
The pattern of decreasing COVID-19 risk with increasing D15 

nAb titer occurred for all nAb titer markers (Supplementary 
Figure 16).

The US Government COVID-19 Vaccine Correlates of 
Protection Program [10] showed that nAb titer against D614G 
was a consistent inverse CoR of COVID-19 [11] for the 
Moderna mRNA-1273 vaccine [7, 9], Janssen AD26.CoV.2S vac
cine [2], Astra-Zeneca Chimp-AdOx vaccine [6], and Novavax 
NVX-CoV2373 vaccine [6]. The results presented here for 
COVAIL are the first results that assessed nAb titer as a correlate 
for the Sanofi recombinant protein vaccine, where nAb titer was 
measured using the same assay (Monogram) employed in 3 of the 
phase 3 trials listed above. Correlates analyses are ongoing for the 
Sanofi VAT0008 phase 3 trial [12, 13], which as 2 harmonized 
placebo-controlled trials will inform about correlates of protec
tion as well as about CoR, and will provide results restricted to 
non-naïve individuals separately for the Prototype and Beta +  
Prototype vaccines. The COVAIL results showed that nAb titer 
is also an inverse CoR for the combined Sanofi recombinant pro
tein pre-S dTM AS03 boosters, both measured at peak/D15 and 
predicted over time. Compared to the previous results, interesting 
features of COVAIL include assessment of CoR in the context of 
Omicron circulating strains and inclusion of nAb titers measured 
against Omicron strains, and a sizable fraction (41.5%) of the co
hort was estimated to have prior infection with SARS-CoV-2. 
Point estimates of CoRs for the Sanofi vaccine were as strong 
as has been observed in any of the phase 3 trials, although there 
are insufficient data to venture inferences about whether the CoR 
strength differs in COVAIL versus the phase 3 trials.

A limitation of this study is that the COVID-19 endpoint was 
defined in some (7/22) cases as a self-reported positive test, dif
fering from the definition in the phase 3 trials that required 
central lab virologic confirmation and meeting pre-specified 
symptoms criteria. For the majority (15/22), the COVID-19 
endpoint was virologically confirmed. Another limitation is 
only 22 evaluable breakthrough COVID-19 endpoints, which 
curtailed the set of objectives that could be addressed. In partic
ular, CoRs could not be assessed separately by history of infec
tion, nor separately by the 3 vaccine product arms, precluding a 
correlate of protection (CoP) analysis comparing COVID-19 
incidence among the randomized groups. Similarly, there is 
low precision for comparing CoRs for COVID-19 endpoints 
proximal versus distal to the booster, and for comparing 
CoRs against different antigens.

The limitations above notwithstanding, point estimates from 
the analyses suggest the following hypothesis-generating re
sults: (1) the CoRs were stronger against booster-proximal 
COVID-19 over the first 3 months, an intriguing trend given 
that nAb titers were stable through 6 months, suggesting wan
ing of protective components of the immune response not cap
tured by nAb titers; and (2) BA.4/BA.5 titer, which best 
matched the circulating strains (majority BA.4/BA.5), was 
not a stronger CoR compared to nAb titer against the original 
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D614G reference strain. Overall, this study provides evidence 
that pseudovirus neutralizing antibody titer—measured with 
a consistent assay employed for other US Government program 
studies—constitutes a biomarker that can be used to predict 
risk of COVID-19 after a Sanofi pre-S dTM AS03 booster.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases on
line. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the cor
responding author.
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